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1.0 Introduction

Linear programming (LP) is a popular tool for solving optimization problems of spe-

cial kind. In 1947, George BernardDantzig developed an efficientmethod, the simplex

algorithm, for solving linear programming problem (LPP). Since the development of

the simplex algorithm, LP has been used to solve optimization problems in industries

as diverse as banking, education, forestry, petroleum, manufacturing, and trucking.

The most common problem in these industries involves allocation of limited resources

among competing activities in the best possible (optimal) way. Real world situations

where LP can be applied are thus diverse, ranging from the allocation of production

facilities to products to the allocation of national resources to domestic needs, from

portfolio selection to the selection of shipping patterns, and so on. In this unit, we

will discuss the mathematical formulation of LPP, the graphical method for solving

two-variable LPP, and simplex algorithm, duality, dual simplex and revised simplex

methods for solving LPP of any number of variables.



MODULE - 1: Mathematical Formulation
of LPP and Graphical Method for Solving
LPP

1.1 Mathematical Formulation of LPP

There are four basic components of an LPP:

• Decision variables - The quantities that need to be determined in order to solve the

LPP are called decision variables.

• Objective function - The linear function of the decision variables, which is to be max-

imized or minimized, is called the objective function.

• Constraints - A constraint is something that plays the part of a physical, social or

financial restriction such as labor, machine, raw material, space, money, etc. These

limits are the degrees to which an objective can be achieved.

• Sign restriction - If a decision variable xi can only assume nonnegative values, then

we use the sign restriction xi ≥ 0. If a variable xi can assume positive, negative or zero

values, then we say that xi is unrestricted in sign.

A linear programming problem (LPP) is an optimization problem in which

(i) the linear objective function is to be maximized (or minimized);

(ii) the values of the decision variables must satisfy a set of constraints where each

constraint must be a linear equation or linear inequality;

(iii) A sign restriction must be associated with each decision variable.

Two of the most basic concepts associated with LP are feasible region and optimal
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solution.

• Feasible region - The feasible region for an LPP is the set of all points that satisfy all

the constraints and sign restrictions.

• Optimal solution - For a maximization problem, an optimal solution is a point in

the feasible region with the largest value of the objective function. Similarly, for a

minimization problem, an optimal solution is a point in the feasible region with the

smallest value of the objective function.

1.1.1 General Linear Programming Problem
A general linear programming problem can be mathematically represented as follows:

Maximize (or Minimize) Z = c1x1 + c2x2 + ...+ cnxn

subject to,

a11x1 + a12x2 + a13x3 + ...+ a1jxj + ...+ a1nxn (≤,=,≥) b1

a21x1 + a22x2 + a23x3 + ...+ a2jxj + ...+ a2nxn (≤,=,≥) b2

.............................................................................................

ai1x1 + ai2x2 + ai3x3 + ...+ aijxj + ...+ ainxn (≤,=,≥) bi

.............................................................................................

am1x1 + am2x2 + am3x3 + ...+ amjxj + ...+ amnxn (≤,=,≥) bm

and x1,x2, ...,xn ≥ 0

The above can be written in compact form as

Maximize (or Minimize) Z =
n∑

j=1

cjxj (1.1)

subject to,
n∑

j=1

aijxj (≤,=,≥) bi ; i = 1,2, ...,m (1.2)

xj ≥ 0; j = 1,2, ...,n. (1.3)

The problem is to find the values of xj ’s that optimize (maximize or minimize) the

objective function (1.1). The values of xj ’s must satisfy the constraints (1.2) and non-

negativity restrictions (1.3). Here, the coefficients cj ’s are referred to as cost coefficients

and aij ’s as technological coefficients; aij represents the amount of the ith resource con-

sumed per unit variable xj and bi , the total availability of the ith resource.



Example 1.1: An oil company owns two refineries − refinery A and refinery B. Re-

finery A is capable of producing 20 barrels of petrol and 25 barrels of diesel per day.

Refinery B is capable of producing 40 barrels of petrol and 20 barrels of diesel per day.

The company requires at least 1000 barrels of petrol and at least 800 barrels of diesel.

If it costs Rs. 300 per day to operate refinery A and Rs. 500 per day to operate refinery

B, how many days should each refinery be operated by the company so as to minimize

costs? Formulate this problem as a linear programming model.

Solution: Let x1 and x2 be the numbers of days the refineries A and B are to be oper-

ated, respectively. Our objective is to minimize Z = 300x1 + 500x2. The total amount

of petrol produced is 20x1 + 40x2. As at least 1000 barrels of petrol is required, we

have the inequality 20x1+40x2 ≥ 1000. Similarly, the total amount of diesel produced

is 25x1 + 20x2. As at least 800 barrels of diesel is required, we have the inequality

25x1 +20x2 ≥ 800. Hence our linear programming model is

Minimize Z = 300x1 +500x2

subject to

20x1 +40x2 ≥ 1000

25x1 +20x2 ≥ 800

x1, x2 ≥ 0.

Example 1.2: In a given factory, there are three machines M1, M2 and M3 used in

making two products P1 and P2, respectively. One unit of P1 occupies machine M1 for

5 minutes, machineM2 for 3 minutes andmachineM3 for 4 minutes, respectively. The

corresponding figures for one unit of P2 are 1 minute for machine M1, 4 minutes for

machine M2 and 3 minutes for machine M3, respectively. The net profit for 1 unit of

P1 is Rs. 30 and for 1 unit of P2 is Rs. 20 (independent of whether the machines are

used to full capacity or not). What production plan gives the most profit? Formulate

the problem as a linear programming problem.

Solution: Let x1 = number of units of P1 produced per hour and x2 = number of

units of P2 produced per hour. Then the total profit from these two products is z =

30x1 + 20x2. Now, x1 units of P1 occupies x1/12 hours at machine M1, x1/20 hours at

machine M2 and x1/15 hours at machine M3. Similarly, x2 units of P2 occupies x2/60

hours at machine M1, x2/15 hours at machine M2 and x2/20 hours at machine M3.

Therefore, we must have
x1
12 +

x2
60 ≤ 1 or, 5x1 + x2 ≤ 60 for machine M1



x1
20 +

x2
15 ≤ 1 or, 3x1 +4x2 ≤ 60 for machine M2

x1
15 +

x2
20 ≤ 1 or, 4x1 +3x2 ≤ 60 for machine M3

Thus the programming model for the production plan is

Maximize z = 30x1 +20x2

subject to

5x1 + x2 ≤ 60

3x1 +4x2 ≤ 60

4x1 +3x2 ≤ 60

x1, x2 ≥ 0.

1.2 LP Solution

1.2.1 Some Terminologies for Solution
• Closed half plane - A linear inequality in two variables is known as a half plane. The

corresponding equality or the line is known as the boundary of the half plane. The

half plane along with its boundary is called a closed half plane.

• Convex set - A set is convex if and only if, for any two points on the set, the line seg-

ment joining those two points lies entirely in the set. Mathematically, A set S is said to

be convex if for all x, y ∈ S, λx + (1−λ)y ∈ S, for all λ ∈ [0,1].

For example, the set S = {(x,y) : 3x + 2y ≤ 12} is convex because for two points (x1, y1)

and (x2, y2)∈ S, it is easy to see that λ(x1, y1) + (1−λ)(x2, y2) ∈ S for all λ ∈ [0,1].

On the other hand, the set S={(x,y) : x2 + y2 ≥ 16} is not convex. Note that the two

points (4,0) and (0,4) ∈ S but λ(4,0) + (1-λ)(0,4) < S for λ = 1/2.

• Convex polygon - A convex polygon is a convex set formed by the intersection of a

finite number of closed half planes.

• Extreme points - The extreme points of a convex polygon are the points of intersection

of the lines bounding the feasible region.

• Feasible solution (FS) - Any non-negative solution which satisfies all the constraints

is known as a feasible solution of the problem.



• Basic solution (BS) - For a set of m simultaneous equations in n variables (n > m)

in an LP problem, a solution obtained by setting (n −m) variables equal to zero and

solving for remainingm equations withm variables is called a basic solution. Thesem

variables are called basic variables and (n−m) variables are called non-basic variables.

• Basic feasible solution (BFS)- A basic solution to an LP problem is called basic feasible

solution (BFS) if it satisfies all the non-negativity restrictions. A BFS is called degener-

ate if the value of at least one basic variable is zero, and non-degenerate if the values

of all basic variables are non-zero and positive.

• Optimal basic feasible solution - A basic feasible solution is called optimal, if it opti-

mizes (maximizes or minimizes) the objective function.

The objective function of an LPP has its optimal value at an extreme point of the

convex polygon generated by the set of feasible solutions of the LPP.

• Unbounded solution - An LPP is said to have unbounded solution if its solution can

be made infinitely large without violating any of the constraints.

1.2.2 Some Important Results
Theorem 1.1: A hyperplane is a convex set.

Proof: Consider the hyperplane S = {x : cx = z}. Let x1 and x2 be two points in S. Then

cx1 = z and cx2 = z. Now, let a point x3 be given by the convex combination of x1 and

x2 as x3 = λx1 + (1−λ)x2, 0 ≤ λ ≤ 1. Then

cx3 = c{λx1 + (1−λ)x2}

= λcx1 + (1−λ)cx2
= λz+ (1−λ)z

= z

Therefore, x3 satisfies cx = z and hence x3 ∈ S. x3 being the convex combination of x1
and x2 in S, S is a convex set. Thus a hyperplane is a convex set.

Theorem 1.2: Intersection of two convex sets is a convex set.

Proof: Let S1 and S2 be two convex sets and S = S1 ∩ S2. Let x1 and x2 be two points

in S. Since x1,x2 ∈ S1 and S1 is convex, therefore, λx1 + (1 − λ)x2 ∈ S1 for 0 ≤ λ ≤ 1.

Again, since x1,x2 ∈ S2 and S2 is convex, therefore, λx1 + (1−λ)x2 ∈ S2 for 0 ≤ λ ≤ 1.

Thus λx1 + (1−λ)x2 ∈ S for x1,x2 ∈ S and λ ∈ [0,1]. Hence S = S1 ∩ S2 is a convex set.



Theorem 1.3: The set of all feasible solutions of an LPP is a convex set.

Proof: Consider an LPPwhose constraints areAx = b, x ≥ 0. Let S be the set of feasible

solutions of the LPP and x1,x2 ∈ S. Then Ax1 = b, x1 ≥ 0 and Ax2 = b, x2 ≥ 0. Let

x3 = λx1 + (1−λ)x2, 0 ≤ λ ≤ 1. Then

Ax3 = A{λx1 + (1−λ)x2}

= λAx1 + (1−λ)Ax2
= λb+ (1−λ)b

= b

Also, x3 ≥ 0 as x1 ≥ 0, x2 ≥ 0 and 0 ≤ λ ≤ 1. Hence x3 satisfies all the constraints of the

given LPP. Thus x3 is a feasible solution belonging to S. Hence S is convex.

Note: If an LPP has two feasible solutions then it has an infinite number of feasible

solutions, as any convex combination of the two feasible solutions is a feasible solution.

Theorem 1.4: The collection of all feasible solutions of an LPP constitutes a convex set

whose extreme points correspond to the basic feasible solutions.

Proof: Let us consider the LP problem

Maximize z = cx

subject to Ax = b and x ≥ 0

Then the feasible region S of the LPP is given by S = {x | Ax = b, x ≥ 0}. Since S is a

convex polyhedron, it is non-empty, closed and bounded. The objective function z =

cx, x ∈ S which is non-empty, closed and bounded. Therefore, z attains its maximum

on S. This proves the existence of an optimal solution.

Now, since S is a convex polyhedron, it has a finite number of extreme points. Let

these be x1,x2, · · · ,xk ∈ S. Therefore, any x ∈ S can be expressed as a convex combina-

tion of the extreme points. Hence we can write

x =
k∑

j=1

αjxj; αj ≥ 0 and
k∑

j=1

αj = 1.

Let z0 =max{cxj, j = 1,2, · · · , k}. Then for any x ∈ S,

z = cx = c(
k∑

j=1

αjxj) =
k∑

j=1

αj(cxj) ≤
k∑

j=1

αjz0 = z0



Therefore, z ≤ z0 for any x ∈ S. Thus, the maximum value of z is attained only at one

of the extreme points of S. That is, at least one extreme point of S yields an optimal

solution. Since each extreme point of S corresponds to a basic feasible solution of the

LPP, therefore, at least one basic feasible solution is optimal. This completes the proof.

1.3 Graphical Method

To solve an LPP, the graphical method is used when there are only two decision vari-

ables. If the problem has three or more variables then we use the simplex method

which will be discussed in the next section.

Example 1.3: Solve the following LPP by graphical method:

Minimize Z = 20x1 +10x2

subject to

x1 +2x2 ≤ 40

3x1 + x2 ≥ 30

4x1 +3x2 ≥ 60

x1,x2 ≥ 0.

Solution: Plot the graphs of all constraints by treating as linear equation. Then use

the inequality constraints to mark the feasible region as shown by the shaded area in

Fig. 1.1. This region is bounded below by the extreme points A(15,0), B(40,0), C(4,18)

and D(6,12). The minimum value of the objective function occurs at the point D(6,12).

Hence, the optimal solution to the given LPP is x1 = 6, x2 = 12 and Zmin = 240.

O H0,0L
A H15,0L B H40,0L

C H4,18L

D H6,12L

10 20 30 40
x1

5

10

15

20

25

30

x2

Extreme Objective function

point Z = 20x1 +10x2

A (15,0) 300

B (40,0) 800

C (4,18) 260

D (6,12) 240

Fig. 1.1: Unique optimal solution in Example 1.3



Example 1.4: Solve the following LPP by graphical method:

Maximize Z = 4x1 +3x2

subject to

x1 +2x2 ≤ 6

2x1 + x2 ≤ 8

x1 ≥ 7

x1,x2 ≥ 0.

Solution: The constraints are plotted on the graph as shown in Fig. 1.2. As there is

no feasible region of solution space, the problem has no feasible solution.

O H0,0L

x1+2x2=6 2x1+x2=8
x1=7

2 4 6 8
x1

2

4

6

8

x2

Fig. 1.2: No feasible solution in Example 1.4

Example 1.5: Show by graphical method that the following LPP has unbounded so-

lution.

Maximize Z = 3x1 +5x2

subject to

x1 +2x2 ≥ 10

x1 ≥ 5

x2 ≤ 10

x1,x2 ≥ 0.

Solution: From the graph as shown in Fig. 1.3, it is clear that the feasible region is

open-ended. Therefore, the value of Z can be made infinitely large without violating

any of the constraints. Hence there exists an unbounded solution of the LPP.



O H0,0L

x1+2x2=10

x2=10

x1=5

2 4 6 8 10
x1

5

10

x2

Fig. 1.3: Unbounded solution in Example 1.5

Note: Unbounded feasible region does not necessarily imply that no finite optimal so-

lution of LP problem exists. Consider the following LPP which has an optimal feasible

solution in spite of unbounded feasible region:

Maximize Z = 2x1 − x2
subject to

x1 − x2 ≤ 1

x1 ≤ 3

x1,x2 ≥ 0
O H0,0L

x1-x2=1x1=3

0 2 4 6
x1

2

4

6

8

10

12

x2

Fig. 1.4: Finite optimal solution

Example 1.6: Solve the following LP problem by graphical method:

Maxiimize Z = 3x1 +2x2

subject to

6x1 +4x2 ≤ 24

x2 ≥ 2, x1 ≤ 3, x1,x2 ≥ 0.

Solution: The constraints are plotted on a graph by treating as equations and then

their inequality signs are used to identify feasible region as shown in Fig. 1.5.

The extreme points of the region are A(0,2), B(0,6), C(2,3) and D(2,2). The slope

of the objective function and the first constraint equation 6x1 + 4x2 = 24 coincide at

line BC. Also, BC is the boundary line of the feasible region. This implies that an



O H0,0L

A H0,2L

B H0,6L

C H2,3L

D H2,2L

2 4 6
x1

2

4

6

x2

Fig. 1.5: An infinite number of optimal

solutions in Example 1.6

Table 1.1

Corners Objective Function

(x, y) Z = 3x1 +2x2

A (0,2) 4

B (0,6) 12

C (2,3) 12

D (2,2) 10

optimal solution of LP problem can be obtained at any point lies on the line segment

BC. It is observed from Table 1.1 that the optimal value (Z = 12) is the same at two

different extreme points B and C. Therefore, several combinations of any two points

on the line segment BC give the same value of the objective function, which are also

optimal solutions of the LP problem. Hence, there exists an infinite number of optimal

solutions of the given LP problem.


